原子无序是多元素晶体材料中普遍存在的难题,并对铜锌锡硫硒(CZTSSe)光伏器件的性能构成了关键挑战。其中,铜-锌(Cu-Zn)无序因其形成能低而尤为常见,会导致高浓度的深能级缺陷和严重的电荷损失。由于无序-有序相变的热力学与原子互换动力学之间存在难以调和的矛盾,调控这种无序态一直非常困难。
在本研究中,中国科学院物理研究所石将建、李冬梅和孟庆波等人通过掺杂镁,在CZTSSe表面引入了额外的空位缺陷,从而降低了原子互换的能垒。这种空位辅助的方法增强了Cu-Zn有序化的动力学过程,进而减少了器件中的电荷损失。最终,我们制备的CZTSSe太阳能电池获得了中国国家光伏产业计量测试中心认证的14.9%光电转换效率。这一成果标志着新兴无机薄膜光伏技术的发展迈出了重要一步。
研究亮点:
创新性的“空位辅助有序化”策略:研究团队没有采用传统的“硬碰硬”掺杂来抑制无序,而是巧妙地通过镁掺杂并后续溶液刻蚀的方法,在材料表面“创造”出大量铜空位。这些空位为铜锌原子交换提供了空间,显著降低了有序化的动力学能垒,实现了从“治标”到“治本”的思路转变。
显著抑制缺陷与电荷损失:该策略使材料表面的Cu-Zn有序度大幅提升。实验证实,优化后器件的体相缺陷密度降低了一半,而界面缺陷密度更是降至原先的十分之一,载流子捕获速率也大幅下降,从而显著提升了器件的开路电压和填充因子。
效率突破与大面积器件验证:该工作获得了14.9%的认证效率,是当前CZTSSe太阳能电池领域的最高效率之一,证明了该策略的有效性。同时,团队成功制备了面积为1.1 cm²的电池,并实现了13.3%的认证效率,展现了该技术走向大面积、产业化的良好潜力。










Wang, J., Meng, F., Lou, L. et al. Vacancy-enhanced cation ordering via magnesium doping to enable kesterite solar cells with 14.9% certified efficiency. Nat Energy (2025).
https://doi.org/10.1038/s41560-025-01902-w

扫一扫关注微信