最新最快太阳能光伏资讯
太阳能光伏网

光伏电站设备损耗分析--保障电站高效发电

目前,我国光伏产业已进入规模化发展阶段,越来越多的光伏电站进入长达25年的运营期。运营期间发电水平是影响电站经济效益的关键因素,因此如何保障光伏电站高效发电成为运营商面临的首要问题。而解决该问题前,首先需进行光伏电站设备损耗分析,明白电站损耗发生在哪里。

以光伏方阵吸收损耗和逆变器损耗为主的电站损耗

光伏电站出力除受资源因素影响外,还受电站生产运行设备损耗的影响,电站设备损耗越大,发电量越小。光伏电站设备损耗主要包括四类:光伏方阵吸收损耗、逆变器损耗、集电线路及箱变损耗、升压站损耗等。

(1)光伏方阵吸收损耗是从光伏方阵经过汇流箱到逆变器直流输入端之间的电量损耗,包括光伏组件设备故障损耗、遮挡损耗、角度损耗、直流电缆损耗以及汇流箱支路损耗;

(2)逆变器损耗是指逆变器直流转交流所引起的电量损耗,包括逆变器转换效率损耗和MPPT最大功率跟踪能力损耗;

(3)集电线路及箱变损耗是从逆变器交流输入端经过箱变到各支路电表之间的电量损耗,包括逆变器出线损耗、箱变变换损耗和厂内线路损耗;

(4)升压站损耗是从各支路电表经过升压站到关口表之间的损耗,包括主变损耗、站用变损耗、母线损耗及其他站内线路损耗。

经过对综合效率在65%~75%、装机容量分别为20MW、30MW和50MW的三个光伏电站10月份数据进行分析,结果显示光伏方阵吸收损耗和逆变器损耗是影响电站出力的主要因素,其中光伏方阵吸收损耗最大,占比约20~30%,逆变器损耗次之,约占2~4%,而集电线路及箱变损耗和升压站损耗相对较小,总共约占2%左右。

进一步分析上述30MW的光伏电站,其建设投资约4亿元左右,该电站在10月份损耗电量为274.66万kW•h,占理论发电量的34.8%,如果按一度电1.0元计算,10月份共损失411.99万元,对电站经济效益影响巨大。

如何降低光伏电站损耗,提高发电量

光伏电站设备的四类损耗中,集电线路及箱变损耗和升压站损耗通常与设备自身性能关系密切,损耗比较稳定。但如果设备发生故障,将会引起较大的电量损失,因此要保证其正常稳定运行。而对于光伏方阵和逆变器,可以通过前期施工和后期运维尽量减少损耗,具体分析如下。

(1)光伏组件和汇流箱设备故障损耗

光伏电站设备很多,上述示例中的30MW光伏电站有420台汇流箱,每个汇流箱下有16条支路(共6720条支路),每条支路有20块电池板(共134400块电池板),设备总量巨大。而数量越多,设备发生故障的频率就越高,产生的电量损失也越大。常见的问题主要有光伏组件烧毁、接线盒起火、电池板碎裂、引线虚焊,汇流箱支路故障等,为了降低这部分的损耗,一方面要加强竣工验收力度,通过有效的验收手段保障电站设备与是从质量,包括出厂设备质量、设备安装、排布达到设计标准,电站施工质量等;另一方面要提升电站智能化运行水平,通过智能化辅助手段进行运行数据分析,及时找出故障源,进行点对点的故障排查,提升运维人员的工作效率,降低电站损耗。

(2)遮挡损耗

由于光伏组件安装角度、排布方式等因素影响,导致部分光伏组件被遮挡,影响光伏阵列的功率输出,导致电量损失。因此,在电站设计施工过程中,要避免光伏组件处于阴影中,同时为了降低热斑现象对光伏组件的损坏,应加装适量旁路二极管将电池组串分为若干部分,使得电池串电压和电流按比例损失,减少损失电量。

(3)角度损耗

光伏阵列的倾角根据目的不同在10°~ 90°范围内变化,通常选择所处的纬度。角度选择一方面影响太阳辐射强度,另一方面由于尘埃、积雪等因素影响光伏组件发电量,例如角度设定45°以上时,能够使20~30cm厚的积雪靠自重滑落,较少因积雪遮挡造成的电量损失。同时,可通过智能化辅助手段控制光伏组件角度,以适应季节、天气等变化,最大限度提升电站发电量。

(4)逆变器损耗

逆变器损耗主要体现在两方面,一是逆变器转化效率引起的损耗,二是逆变器的MPPT最大功率跟踪能力引起的损耗。这两方面都是由逆变器自身性能决定,通过后期运维降低逆变器损失的效益较小,因此锁定电站建设初期的设备选型,通过选择性能较优的逆变器降低损耗。后期运维阶段,可通过智能化手段采集逆变器运行数据并进行分析,为新建电站的设备选型提供决策支持。

通过以上分析可知,损耗将造成光伏电站的巨大损失,应首先通过降低重点区域损耗提高电站的综合效率。一方面通过有效的验收工具保证电站的设备及施工质量;另一方面在电站运维过程中,要借助智能化辅助手段,提升电站的生产运行水平,提高发电量。

最新相关

刚刚,多晶硅价格下降2.73%!

光伏头条(微信号: PV-2005)获悉,4月30日,硅业分会公布本周硅料价格。本周多晶硅现货市场成交较少,价格逐渐松动。n型复投料成交价格区间为3.70-4.50万元/吨,成交均价为3.92万元/吨,环比下降2.7...

HJT电池

HJT电池是指异质结晶太阳电池(Heterojunction with Intrinsic Thin layer,简称HJT)电池。这种太阳能电池采用异质结晶技术,将多晶硅薄膜夹在两层非晶硅薄膜之间,形成多层结构。HJT电池具有高效...

N型双面电池

N型双面电池是一种太阳能电池的类型,它与传统的单面太阳能电池不同,可以从正反两个方向吸收太阳能并转换为电能。这种双面太阳能电池通常具有一种N型的结构。主要特点和优势包括: 1.双面光吸收...

光伏玻璃

光伏玻璃是一种特殊设计的玻璃,能够将太阳光转化为电能。它在结构上与普通玻璃有所不同,通常包含太阳能电池技术,使其能够在太阳照射下产生电力。以下是有关光伏玻璃的一些关键信息: 构造: 光...

电池片

电池片是太阳能电池板的组成部分之一,也称为太阳能电池电池片或太阳能电池芯片。这是太阳能电池板中的基本发电单元,负责将光能转化为电能。主要有以下几个方面的内容: 材料: 电池片的主要材料...

MWT电池

MWT电池是指金属线路太阳能电池(Metal Wrap Through Solar Cell)。这种太阳能电池采用了一种独特的设计,通过将电池的金属电极线路从电池的正面移到了背面,从而改善了电池的性能。主要特点和优...

N型双面电池和N型电池的区别

N型双面电池"和"N型电池"之间存在一些区别,主要涉及它们的设计和工作原理: N型双面电池: 双面电池是指太阳能电池能够从正面和背面吸收太阳能并将其转换为电能的类型。这种类型的电池可以提高...