最新最快太阳能光伏资讯
太阳能光伏网

多晶硅生产、应用、市场知识大全

多晶硅*概述

多晶硅英文名:polycrystalline silicon是由大量结晶学方向不相同的硅单晶体组成的硅晶体。它是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。

多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。

多晶硅*分类

多晶硅按纯度分类可以分为冶金级(工业硅)、太阳能级、电子级。

1冶金级硅(MG):是硅的氧化物在电弧炉中被碳还原而成。一般含Si为90-95%以上,高达99.8%以上。

2太阳级硅(SG) :纯度介于冶金级硅与电子级硅之间,至今未有明确界定。一般认为含Si在99.99%–99.9999%(4~6个9)。

3电子级硅(EG):一般要求含Si>99.9999%以上,超高纯达到99.9999999%~99.999999999%(9~11个9)。

多晶硅*性质

灰色金属光泽。密度2.32~2.34。熔点1410℃。沸点2355℃。溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。硬度介于锗和石英之间,室温下质脆,切割时易碎裂。加热至800℃以上即有延性,1300℃时显出明显变形。常温下不活泼,高温下与氧、氮、硫等反应。高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。电子工业中广泛用于制造半导体收音机、录音机、电冰箱、彩电、录像机、电子计算机等的基础材料。由干燥硅粉与干燥氯化氢气体在一定条件下氯化,再经冷凝、精馏、还原而得。

多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。

多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。被称为“微电子大厦的基石”。

多晶硅*与单晶硅的区别

1.在电学性质方面,多晶硅晶体的导电性远不如单晶硅显著,甚至于几乎没有导电性。

2.在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显。

3.两者的外观上是不一样的。

多晶硅*生产方法

多晶硅的生产技术主要为改良西门子法和硅烷法。西门子法通过气相沉积的方式生产柱状多晶硅,为了提高原料利用率和环境友好,在前者的基础上采用了闭环式生产工艺即改良西门子法。该工艺将工业硅粉与HCl反应,加工成SiHCI3 ,再让SiHCl3在H2气氛的还原炉中还原沉积得到多晶硅。还原炉排出的尾气H2、SiHCl3、SiCl4、SiH2Cl2和HCl经过分离后再循环利用。硅烷法是将硅烷通入以多晶硅晶种作为流化颗粒的流化床中,使硅烷裂解并在晶种上沉积,从而得到颗粒状多晶硅。改良西门子法和硅烷法主要生产电子级晶体硅,也可以生产太阳能级多晶硅。

西门子法

西门子法是由德国Siemens公司发明并于1954年申请了专利1965年左右实现了工业化。经过几十年的应用和展,西门子法不断完善,先后出现了第一代、第二代和第三代,第三代多晶硅生产工艺即改良西门子法,它在第二代的基础上增加了还原尾气干法回收系统、SiCl4回收氢化工艺,实现了完全闭环生产,是西门子法生产高纯多晶硅技术的最新技术,其具体工艺流程如图1所示。硅在西门子法多晶硅生产流程内部的循环利用。

硅烷法

硅烷法是将硅烷通入以多晶硅晶种作为流化颗粒的流化床中,是硅烷裂解并在晶种上沉积,从而得到颗粒状多晶硅。因硅烷制备方法不同,有日本Komatsu发明的硅化镁法,其具体流程如图2所示、美国union Carbide发明的歧化法、美国MEMC采用的NaAlH4与SiF4反应方法。

硅化镁法是用Mg2Si与NH C1在液氨中反应生成硅烷。该法由于原料消耗量大,成本高,危险性大,而没有推广,目前只有日本Komatsu使用此法。现代硅烷的制备采用歧化法,即以冶金级硅与SiC14为原料合成硅烷,首先用SiCl4、Si和H2反应生成SiHCl3 ,然后SiHCl3歧化反应生成SiH2Cl2,最后由SiH2Cl2进行催化歧化反应生成SiH4 ,即:3SiCl4+ Si+ 2H2= 4SiHCl3,2SiHC13= SiH2Cl2+ SiC14,3SiH2C12=SiH4+ 2SiHC13。由于上述每一步的转换效率都比较低,所以物料需要多次循环,整个过程要反复加热和冷却,使得能耗比较高。制得的硅烷经精馏提纯后,通入类似西门子法固定床反应器,在800℃下进行热分解,反应如下:SiH4= Si+ 2H2。

硅烷气体为有毒易燃性气体,沸点低,反应设备要密闭,并应有防火、防冻、防爆等安全措施。硅烷又以它特有的自燃、爆炸性而著称。硅烷有非常宽的自发着火范围和极强的燃烧能量,决定了它是一种高危险性的气体。硅烷应用和推广在很大程度上因其高危特性而受到限制在涉及硅烷的工程或实验中,不当的设计、操作或管理均会造成严重的事故甚至灾害。然而,实践表明,过分的畏惧和不当的防范并不能提供应用硅烷的安全保障。因此,如何安全而有效地利用硅烷,一直是生产线和实验室应该高度关注的问题。

硅烷热分解法与西门子法相比,其优点主要在于:硅烷较易提纯,含硅量较高(87.5%,分解速度快,分解率高达99%),分解温度较低,生成的多晶硅的能耗仅为40 kW ·h/kg,且产品纯度高。但是缺点也突出:硅烷不但制造成本较高,而且易燃、易爆、安全l生差,国外曾发生过硅烷工厂强烈爆炸的事故。因此,工业生产中,硅烷热分解法的应用不及西门子法。改良西门子法目前虽拥有最大的市场份额,但因其技术的固有缺点—产率低,能耗高,成本高,资金投入大,资金回收慢等,经营风险也最大。只有通过引人等离子体增强、流化床等先进技术,加强技术创新,才有可能提高市场竞争能力。硅烷法的优势有利于为芯片产业服务,目前其生产安全性已逐步得到改进,其生产规模可能会迅速扩大,甚至取代改良西门子法。虽然改良西门子法应用广泛,但是硅烷法很有发展前途。

与西门子方法相似,为了降低生产成本,流化床技术也被引入硅烷的热分解过程,流化床分解炉可大大提高SiH4的分解速率和Si的沉积速率。但是所得产品的纯度不及固定床分解炉技术,但完全可以满足太阳能级硅质量要求,另外硅烷的安全性问题依然存在。

美国MEMC公司采用流化床技术实现了批量生产,其以NaA1H4与SiF4为原料制备硅烷,反应式如下:

SiF4+NaAlH4=Sil4+4NaAlF4。硅烷经纯化后在流化床式分解炉中进行分解,反应温度为730℃左右,制得尺寸为1000微米的粒状多晶硅。该法能耗低,粒状多晶硅生产分解电耗为12kW·h/kg左右,约为改良西门子法的1/10,且一次转化率高达98%,但是产物中存在大量微米尺度内的粉尘,且粒状多晶硅表面积大,易被污染,产品含氢量高,须进行脱氢处理。

流化床法

以四氯化硅、氢气、氯化氢和产业硅为原料在流化床内沸腾床高温高压下天生三氯氢硅将三氯氢硅再进一步歧化加氢反应天生二氯二氢硅继而天生硅烷气。

制得的硅烷气通进加有小颗粒硅粉的流化床反应炉内进行连续热分解反应天生粒状多晶硅产品。由于在流化床反应炉内参与反应的硅表面积大生产效率高电耗低与本钱低适用于大规模生产太阳能级多晶硅。唯一的缺点是安全性差危险性大。其次是产品纯度不高但基本能满足太阳能电池生产的使用。

由于在流化床反应炉内参与反应的硅表面积大,故该方法生产效率高、电耗较低、成本低。该方法的缺点是安全性较差,危险性较大;生长速率较低(4~6μm/min);一次转换效率低,只有2%~10%;还原温度高(1200℃),能耗高(达250 kWh/kg),产量低。

目前采用该方法生产颗粒状多晶硅的公司主要有:挪威REC公司、德国Wacker公司、美国Hemlock和MEMC公司等

冶金法

冶金法制备太阳能级多晶硅(Solar Grade Silicon简称SOG—Si),是指以冶金级硅(MetallurgicalGrade Silicon简称MG-Si)为原料(98.5%~99.5%)。经过冶金提纯制得纯度在99.9999%以上用于生产太阳能电池的多晶硅原料的方法。冶金法在为太阳能光伏发电产业服务上,存在成本低、能耗低、产出率高、投资门槛低等优势,通过发展新一代载能束高真空冶金技术,可使纯度达到6N以上,并在若干年内逐步发展成为太阳能级多晶硅的主流制备技术。

不同的冶金级硅含有的杂质元素不同,但主要杂质基本相同,主要包括Al、Fe、Ti、C、P、B等杂质元素。而且针对不同的杂质也研究了一些有效的去除方法。自从1975年Wacker公司用浇注法制备多晶硅材料以来,冶金法制备太阳能级多晶硅被认为是一种有效降低生产成本、专门定位于太阳多级多晶硅的生产方法,可以满足光伏产业的迅速发展需求。针对不同的杂质性质,制备太阳能级多晶硅的技术路线。

多晶硅*生产危害

多晶硅生产过程中主要危险、有害物质中氯气、氢气、三氯氢硅、氯化氢等主要危险特性有:

1)氢气:与空气混合能形成爆炸性混合物,遇热或明火即会发生爆炸。气体比空气轻,在室内使用和储存时,漏气上升滞留屋顶不易排出,遇火星会引起爆炸。氢气与氟、氯、溴等卤素会剧烈反应。

2)氧气:助燃物、可燃物燃烧爆炸的基本要素之一,能氧化大多数活性物质。与易燃物(如乙炔、甲烷等)形成有爆炸性的混合物。

3)氯:有刺激性气味,能与许多化学品发生爆炸或生成爆炸性物质。几乎对金属和非金属都起腐蚀作用。属高毒类。是一种强烈的刺激性气体。

4)氯化氢:无水氯化氢无腐蚀性,但遇水时有强腐蚀性。能与一些活性金属粉末发生反应,放出氢气。遇氰化物能产生剧毒的氰化氢气体。

5)三氯氢硅:遇明火强烈燃烧。受高热分解产生有毒的氯化物气体。与氧化剂发生反应,有燃烧危险。极易挥发,在空气中发烟,遇水或水蒸气能产生热和有毒的腐蚀性烟雾。燃烧(分解)产物:氯化氢、氧化硅。

6)四氯化硅:受热或遇水分解放热,放出有毒的腐蚀性烟气。

7)氢氟酸:腐蚀性极强。遇H发泡剂立即燃烧。能与普通金属发生反应,放出氢气而与空气形成爆炸性混合物。

8)硝酸:具有强氧化性。与易燃物(如苯)和有机物(如糖、纤维素等)接触会发生剧烈反应,甚至引起燃烧。与碱金属能发生剧烈反应。具有强腐蚀性。

9)氮气:若遇高热,容器内压增大。有开裂和爆炸的危险。

10)氟化氢:腐蚀性极强。若遇高热,容器内压增大,有开裂和爆炸的危险。

11)氢氧化钠:该品不燃,具强腐蚀性、强刺激性,可致人体灼伤。

多晶硅*工业发展

从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2]对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。

多晶硅*国际多晶硅产业概况

当前,晶体硅材料(包括多晶硅和单晶硅)是最主要的光伏材料,其市场占有率在90%以上,而且在今后相当长的一段时期也依然是太阳能电池的主流材料。多晶硅材料的生产技术长期以来掌握在美、日、德等3个国家7个公司的10家工厂手中,形成技术封锁、市场垄断的状况。

多晶硅的需求主要来自于半导体和太阳能电池。按纯度要求不同,分为电子级和太阳能级。其中,用于电子级多晶硅占55%左右,太阳能级多晶硅占45%,随着光伏产业的迅猛发展,太阳能电池对多晶硅需求量的增长速度高于半导体多晶硅的发展,预计到2008年太阳能多晶硅的需求量将超过电子级多晶硅。

1994年全世界太阳能电池的总产量只有69MW,而2004年就接近1200MW,在短短的10年里就增长了17倍。专家预测太阳能光伏产业在二十一世纪前半期将超过核电成为最重要的基础能源之一。

据悉,美国能源部计划到2010年累计安装容量4600MW,日本计划2010年达到5000MW,欧盟计划达到6900MW,预计2010年世界累计安装量至少18000MW 。从上述的推测分析,至2010年太阳能电池用多晶硅至少在30000吨以上,表2给出了世界太阳能多晶硅工序的预测。据国外资料分析报道,世界多晶硅的产量2005年为28750吨,其中半导体级为20250吨,太阳能级为8500吨,半导体级需求量约为19000吨,略有过剩;太阳能级的需求量为15000吨,供不应求,从2006年开始太阳能级和半导体级多晶硅需求的均有缺口,其中太阳能级产能缺口更大。

据日本稀有金属杂志2005年11月24日报道,世界半导体与太阳能多晶硅需求紧张,主要是由于以欧洲为中心的太阳能市场迅速扩大,预计2006年,2007年多晶硅供应不平衡的局面将为愈演愈烈,多晶硅价格方面半导体级与太阳能级原有的差别将逐步减小甚至消除,2005年世界太阳能电池产量约1GW,如果以1MW用多晶硅12吨计算,共需多晶硅是1.2万吨,2005-2010年世界太阳能电池平均年增长率在25%,到2010年全世界半导体用于太阳能电池用多晶硅的年总的需求量将超过6.3万吨。

世界多晶硅主要生产企业有日本的Tokuyama、三菱、住友公司、美国的Hemlock、Asimi、SGS、MEMC公司,德国的Wacker公司等,其年产能绝大部分在1000吨以上,其中Tokuyama、Hemlock、Wacker三个公司生产规模最大,年生产能力均在3000-5000吨。国际多晶硅主要技术特征⑴多种生产工艺路线并存,产业化技术封锁、垄断局面不会改变。由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。其中改良西门子工艺生产的多晶硅的产能约占世界总产能的80%,短期内产业化技术垄断封锁的局面不会改变。

⑵新一代低成本多晶硅工艺技术研究空前活跃。除了传统工艺(电子级和太阳能级兼容)及技术升级外,还涌现出了几种专门生产太阳能级多晶硅的新工艺技术,主要有:改良西门子法的低价格工艺;冶金法从金属硅中提取高纯度硅;高纯度SiO2直接制取;熔融析出法(VLD:Vaper to liquid deposition);还原或热分解工艺;无氯工艺技术,Al-Si溶体低温制备太阳能级硅;熔盐电解法等。

多晶硅*国内多晶硅产业概况

近年来,在中央政府大力推广新能源政策的支持下,各地方省份也是积极跟进,培养优势产业。江西省抓住机遇,凭借粉石英(硅材料主要原料)储量全国第一的资源优势,出台多方面措施保障光伏产业发展。短短3、4年间,使得一大批光伏产业上下游项目迅速在江西集聚,成为中国重要的光伏产业基地。以新余为主产地、以赛维LDK和盛丰能源为核心企业的产业带具有较强的生产能力,初步建立了从硅料、硅片到太阳能电池组件及配套产品的完整产业链,拥有了对外合作的有效途径和一批关键人才,在国内已具有较明显的规模优势和市场竞争力。

2008年江西省光伏产业发展迅速,实现销售收入128.9亿元。另外该省生产的多晶硅片已占全球总产量的四分之一,龙头企业赛维2008年的产能超过1400MW。

2009年初,经省政府同意,由江西省发改委牵头编制的《江西省光伏产业发展规划》正式下发,为江西光伏产业发展确定了大的方向。规划中提到,力争到2012年将江西打造成为全球重要的光伏产业生产基地。按照规划,未来数年,新余、丰城、南昌产业带将建成全省光伏产业主要集聚区。

江西丰城工业园集中了国内几家主要的多晶硅生产企业,目前综合产能达10000吨以上,其中江西盛丰新能源科技有限公司产能最大,2009年达到1500吨,2010年可达3000吨,预计2012年项目计划工程完成后,产能将稳定在4000吨以上。

江西盛丰新能源科技有限公司于2008年9月28日注册成立。公司位于赣江之滨的丰城市丰源工业园,距省会南昌市仅60公里,距昌北机场1小时路程,周边紧靠105国道、昌樟高速公路,交通便利。

盛丰能源是一家专业从事太阳能级多晶硅研发和生产的企业,拥有一批长期从事电力及硅材料提纯生产的协作团队,其具有自主知识产权的新物理法太阳能级高纯硅生产技术,将为国内太阳能电池制造提供高效高纯硅料并大幅降低太阳能电池制造成本,成为有别于西门子法高纯硅生产技术依靠者,以大力提升光伏发电的竞争力。

江西赛维LDK太阳能高科技有限公司是世界规模最大的太阳能多晶硅片生产企业。工厂坐落于江西省新余市经济开发区,专注于太阳能多晶硅铸锭及多晶硅片研发、生产、销售为一体的高新技术光伏企业,拥有国际最先进的生产技术和设备。公司注册资金11095万美元,总投资近3亿美元。2006年4月份投产, 7月份产能达到100兆瓦,8月份入选“RED HERRING亚洲百强企业”,10月份产能达到200兆瓦,被国际专业人士称为“LDK速度奇迹”。荣获“2006年中国新材料产业最具成长性企业”称号。目前公司正致力于发展成为一个“世界级光伏企业”。

2007年6月1日,赛维LDK成功在美国纽约证交所上市,成为中国企业历史上在美国单一发行最大的一次IPO;赛维LDK是江西省企业有史以来第一次在美国上市的企业,是中国新能源领域最大的一次IPO。

该公司1.5万吨硅料项目近日已在江西省新余市正式启动,该项目总固定资产投资120亿元以上,预计将成为目前全球太阳能领域单个投资额最多、产能设计规模最大的项目之一。

据悉,该项目计划首期在2008年底前建成投产,形成6000吨太阳能级硅料的年生产能力;2009年项目全部建成投产后,将形成1.5万吨产能,从而使该公司成为世界主要的太阳能多晶硅原料生产企业。

多晶硅*行业发展的主要问题

产生大量污染

多晶硅是高污染的项目,中国多数多晶硅企业环保不完全达标。生产多晶硅的副产品——四氯化硅是高毒物质。用于倾倒或掩埋四氯化硅的土地将变成不毛之地,草和树都不会在这里生长。它具有潜在的极大危险,不仅有毒,还污染环境,回收成本巨大。

产业化差距

同国际先进水平相比,国内多晶硅生产企业在产业化方面的差距主要表现在以下几个方面:

产能低供需矛盾突出

2005年中国太阳能用单晶硅企业开工率在20%-30%,半导体用单晶硅企业开工率在80%-90%,无法实现满负荷生产,多晶硅技术和市场仍牢牢掌握在美、日、德国的少数几个生产厂商中,严重制约中国产业发展。

生产规模小

现在公认的最小经济规模为1000吨/年,最佳经济规模在2500吨/年,而中国现阶段多晶硅生产企业离此规模仍有较大的距离。

工艺设备落后

同类产品物料和电力消耗过大,三废问题多,与国际水平相比,国内多晶硅生产物耗能耗高出1倍以上,产品成本缺乏竞争力。

其他

1千吨级工艺和设备技术的可靠性、先进性、成熟性以及各子系统的相互匹配性都有待生产运行验证,并需要进一步完善和改进。

2国内多晶硅生产企业技术创新能力不强,基础研究资金投入太少,尤其是非标设备的研发制造能力差。

3地方政府和企业项目投资多晶硅项目,存在低水平重复建设的隐忧。

多晶硅*发展对策与建议

1、发展壮大中国多晶硅产业的市场条件已经基本具备、时机已经成熟,国家相关部门加大对多晶硅产业技术研发,科技创新、工艺完善、项目建设的支持力度,抓住有利时机发展壮大中国的多晶硅产业。

2、支持最具条件的改良西门子法共性技术的实施,加快突破千吨级多晶硅产业化关键技术,形成从材料生产工艺、装备、自动控制、回收循环利用的多晶硅产业化生产线,材料性能接近国际同类产品指标;建成节能、低耗、环保、循环、经济的多晶硅材料生产体系,提高我们多晶硅在国际上的竞争力。

3、依托高校以及研究院所,加强新一代低成本工艺技术基础性及前瞻性研究,建立低成本太阳能及多晶硅研究开发的知识及技术创新体系,获得具有自主知识产权的生产工艺和技术。

4、政府主管部门加强宏观调控与行业管理,避免低水平项目的重复投资建设,保证产业的有序、可持续发展。

5、《多晶硅产能严重过剩地方政府成主要推手》。

从工业化发展来看,重心已由单晶向多晶方向发展。多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级。由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。

多晶硅*用途

1.制作单晶硅,一般需要用高纯度的电子级硅(EG)。单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。

2.制作太阳能电池,一般使用太阳能级硅(SG),多晶硅太阳能电池是兼具单晶硅电池的高转换效率和长寿命以及非晶硅薄膜电池的材料制备工艺相对简化等优点的新一代电池。

在太阳能利用上,单晶硅和多晶硅也发挥着巨大的作用。虽然从目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料。

最新相关

太阳能光伏发电的优点有哪些?

太阳能光伏发电是一种利用太阳能将光能直接转化为电能的技术。光伏发电系统主要由光伏电池组成,当太阳光照射到光伏电池上时,光子与半导体材料中的原子相互作用,产生光电效应,使得电子从价带跃...

光伏逆变器与储能逆变器有何不同?

在新能源领域,光伏逆变器和储能逆变器都是重要的设备,它们在我们的生活中扮演着不可或缺的角色。但是,这两者之间究竟有什么区别呢?我们将从结构、功能、应用场景等方面,对这两种逆变器进行深...

n型颗粒硅暴跌9.47%!

本周多晶硅价格再度下滑。其中n型棒状硅成交价格区间为4.50-5.20万元/吨,成交均价为4.92万元/吨,环比下跌6.29%。p型致密料成交价格区间为4.00-4.50万元/吨,成交均价为4.28万元/吨,环比下跌6.7...

中来股份终止140亿元硅基项目

4月24日晚间,苏州中来光伏新材股份有限公司(以下简称"公司")发布公告称,公司于2024年4月24日召开第五届董事会第十三次会议和第五届监事会第十次会议,审议通过了《关于终止硅基项目的议案》。...

江苏扬州德沪钙钛矿产业园开工

江苏扬州德沪钙钛矿产业园开工

4月16日,扬州经济技术开发区在"扬州德沪钙钛矿产业园"隆重举行重大项目集中开工仪式,标志着"扬州德沪钙钛矿产业园"暨"德沪钙钛矿研究院100MW级中试平台"正式迈入建设新篇章。扬州市委副书记、...

乐成智能中标上市公司钙钛矿项目

近日,乐成智能收到通知--已中标某近千亿市值上市公司的钙钛矿项目;根据协议,乐成智能将向对方交付若干钙钛矿电池激光设备。这是继为多家钙钛矿组件头部企业交付100MW以上级别的钙钛矿激光生...